Ergebnisse für Germany Data Scientist vs. Data Analyst | 2000 Jobs

  1. Degussa Bank AG Logo
    bei Degussa Bank AG
    in
    • Hessen

    Suchen Sie einen Arbeitgeber bei dem Sie mit hoher Eigenverantwortung und flachen Hierarchien Ihre Fähigkeiten und Kenntnisse unter Beweis stellen können Einen Arbeitgeber der Tradition und Innovation verbindet Gratulation Sie müssen nicht weitersuchen - werden Sie WorkSite Banker Wir sind Deutschlands einzige WorkSite Bank und stehen mit unseren Werten Nähe..... klicken sie bewerben für die volle

  2. FERCHAU GmbH Logo
    bei FERCHAU GmbH
    in
    • Baden-Württemberg

    Sie sind Mobilitätsspezialist und möchten eine der spannendsten Branchen durch Ihre Ideen voranbringen Der FERCHAU-Geschäftsbereich AUTOMOTIVE unterstützt alle großen Automobilhersteller und Zulieferer in den Zukunftsthemen von Elektroantrieb bis autonomes Fahren. Nutzen Sie Ihr Know-how um komplexe Projekte erfolgreich umzusetzen und den Fortschritt zu gestalten...... klicken sie bewerben für die volle

What is the difference between Data Scientist and Data Analyst?

Currently, there is confusion about what data scientists and data analysts are supposed to do in daily work and how they differ from each other.

Data scientists are usually given tasks related to departments of the company (e.g., marketing) where they are required to develop methods to maximize the benefits of the company, e.g., by increasing the revenue.  These tasks vary from developing algorithms to develop machine/deep models.
There is a common misunderstanding that a data scientist develops only machine/deep learning models. In fact, most of the data scientists time is spent on cleaning and preparing huge amounts of data (usually stored on Big Storage like Hadoop) in order to be used for data science tasks, e.g., training machine learning models.

Data Analysts are usually given tasks related to departments of the company (e.g., marketing) where they are required to analyze, visualize and communicate huge amounts of data in an easy and interpretable manner to the decision-makers. The data analyst role is an important role and without it, decision-makers cannot make easy their decisions.







What are the role requirements for the Data Scientist and Data Analyst?

Data scientists are usually required to have solid knowledge in:
  • math background and particularly in probability and discrete and continue math.   
  • scripting languages such as Python or R 
  • data analysis tools such as SQL 
  • machine/deep learning algorithms on theoretical and practical levels

Data Analysts are usually required to have:
  • A solid background in statistics   
  • Solid knowledge in the data analysis tools such as SQL 
  • Solid knowledge in dealing with big data e.g., Hadoop data by using Hive and Impala 
  • Knowledgeable in data visualization tools e.g., looker, D3.js to be able to visualize your data and results, e.g., by creating dashboards
  • Some knowledge in scripting languages such as Python or R 

The roles of data scientists and data analysts have similar requirements. However, since data scientists usually develop a machine learning model, they are required to know the math behind those models which are mostly about probability theory and discrete math.  On the other hand, data analysts are required to apply many statistical methods to interpret the data (e.g., obtain P-value for A/B tests).